Suggestions for teaching the new IB Biology syllabus (2023 –)

The new syllabus has been divided into four themes (Unity and Diversity, Form and Function, Interactions and Interdependencies, Continuity and Change).

• These themes have been further sub-divided into four levels of organisation (Molecules, Cells, Organisms, Ecosystems).

While the use of themes is great for making connections between different topics, there are (in my opinion) a number of limitations with this model:

- 1. Certain concepts that are closely related may become disconnected across the themes (for example: evolution in A4.1 and natural selection in D4.1).
- 2. Higher level content is intrinsically embedded into the topics, making it difficult to teach separately from the standard level content.

Many schools have SL and AHL students learning in the same class and may not even start to teach the AHL content until the second year of the diploma.

• This allows students to get a feel for the subject and their own strengths and weaknesses before being made to lock in their SL and HL subject selections.

With this in mind, I have taken the content and reorganised it into traditional topics (similar to the existing Biology syllabus).

• An advantage of this is that all AHL content has been organised into discrete topics to better allow the separation of SL and AHL coursework.

On the following pages, I have included an outline of each teaching structure (Themes and Topics), as well as a possible example of a course plan for each.

- Each course plan is based on the premise that the school year consists of four 10-week terms and so the 2-year Diploma consists of roughly 70 weeks.
- Of the 70 weeks, 64 weeks were allocated for teaching the content (roughly 16 weeks per theme) and 6 weeks allocated to associated assessments.

The goal is to have the new website partially populated with content by the start of 2024 (sorry northern hemisphere teachers, I am from down under!)

• In the meantime, the old website should still be useful and will continue to remain online until all students have finished the old course (November 2024).

Section	Page
Suggestions for teaching the new IB Biology syllabus (2023 –)	1
IB Syllabus by Theme	2
Proposed Themes Timeline	3 – 6
IB Syllabus by Topic	7
Proposed Topics Timeline	8 - 11

IB SYLLABUS: THEMES

Thoma	Level of Organisation					
Theme	Molecules	Cells	Organisms	Ecosystems		
	Common ancestry has given liv	Common ancestry has given living organisms many shared features while evolution has resulted in the rich biodiversity of life on Earth.				
A Unity and	A1.1 Water	A2.1 Origins of cells [HL only]	A3.1 Diversity of organisms	A4.1 Evolution and speciation		
Unity and diversity	A1.2 Nucleic acids	A2.2 Cell structure	A3.2 Classification and cladistics	A4.2 Conservation of diversity		
		A2.3 Viruses [HL only]	[HL only]			
		Adaptations are forms tha	t correspond to function.			
	These adaptati	ons persist from generation to genero	ition because they increase the chai	nces of survival.		
В	B1.1 Carbohydrates and lipids	B2.1 Membranes and	B3.1 Gas exchange	B4.1 Adaptation to		
Form and	B1.2 Proteins	membrane transport	B3.2 Transport	environment		
function		B2.2 Organelles and	B3.3 Muscle and motility	B4.2 Ecological niches		
		compartmentalisation	[HL only]			
		B2.3 Cell specialization				
	Syster	ms are based on interactions, interdep	pendence and integration of compo	nents.		
С	System	ns result in emergence of new propert	ies at each level of biological organi I	ization.		
Interaction and	C1.1 Enzymes and metabolism	C2.1 Chemical signalling	C3.1 Integration of body systems	C4.1 Populations and		
interdependence	C1.2 Cell respiration	[HL only]	C3.2 Defence against disease	communities		
	C1.3 Photosynthesis	C2.2 Neural signalling		C4.2 Transfers of energy		
	Living things	have mechanisms for maintaining eq	uilibrium and for bringing about tra	insformation.		
D		Environmental change is a driver	of evolution by natural selection.			
Continuity and	D1.1 DNA replication	D2.1 Cell and nuclear division	D3.1 Reproduction	D4.1 Natural selection		
change	D1.2 Protein synthesis	D2.2 Gene expression [HL only]	D3.2 Inheritance	D4.2 Stability and change		
	D1.3 Mutations / gene editing	D2.3 Water potential	D3.3 Homeostasis	D4.3 Climate change		

Proposed Weekly Planner – Themes

Semester 1 (20 weeks)

Time	Unit	Content	Sample Activities (SL)	Sample Activities (HL)
3 weeks	A1: Molecules	A1.1 Water [SL/HL]	DNA Extraction	Molecular Visualisation
	SL: 5 hours	A1.2 Nucleic Acids [SL/HL]		(Nucleosomes)
	HL: 3 hours			
3 weeks	A2: Cells	A2.1 Origins of Cells [HL]	Microscopy	
	SL: 4 hours	A2.2 Cell Structure [SL/HL]		
	HL: 5 hours	A2.3 Viruses [HL]		
3 weeks	A3: Organisms	A3.1 Diversity of organisms [SL/HL]	Karyotyping Activity	Dichotomous Key
	SL: 6 hours	A3.2 Classification and cladistics [HL]	Genome Databases	
	HL: 2 hours			
3 weeks	A4: Ecosystems	A4.1 Evolution and speciation [SL/HL]	Phylogeny Tree	
	SL: 7 hours	A4.2 Conservation of biodiversity [SL]		
	HL: 1 hours			
3 weeks	B1: Molecules	B1.1 Carbohydrates and lipids [SL]	Starch Hydrolysis	Molecular Visualisation
	SL: 6 hours	B1.2 Proteins [SL/HL]	(Diastase / Amylase)	(Protein Structure)
	HL: 2 hours			
4 weeks	B2: Cells	B2.1 Membranes and Membrane Transport [SL/HL]	Agar Cube Diffusion	Beetroot Permeability
	SL: 7 hours	B2.2 Organelles and Compartmentalisation [SL/HL]	(SA:Vol Ratio)	
	HL: 5 hours	B2.3 Cell specialization [SL/HL]		
1 week	End of Semester	Exam Week (Mid-Year)		·

Proposed Weekly Planner – Themes

Semester 2 (20 weeks)

Time	Unit	Content	Sample Activities (SL)	Sample Activities (HL)
4 weeks	B3: Organisms	B3.1 Gas exchange [SL/HL]	Respirometry	
	SL: 6 hours	B3.2 Transport [SL/HL]	Stomatal Density	
	AHL: 6 hours	B3.3 Muscle and motility [HL]	Heart Rate Experiment	
			Histology (Blood / Plants)	
3 weeks	B4: Ecosystems	B4.1 Adaptation to environment [SL]	Transect Data	Goniometer
	SL: 7 hours	B4.2 Ecological niches [SL]	Model Skull Comparisons	
6 weeks	C1: Molecules	C1.1 Enzymes and metabolism [SL/HL]	Yeast Fermentation	Enzyme Inhibitor
	SL: 8 hours	C1.2 Cell respiration [SL/HL]	Chromatography	Experiment
	AHL: 8 hours	C1.3 Photosynthesis [SL/HL]	Leaf Disc Experiment	
4 weeks	C2: Cells	C2.1 Chemical signalling [HL]		Oscilloscope Traces
	SL: 3 hours	C2.2 Neural signalling [SL/HL]		
	AHL: 7 hours			
3 weeks	End of Year	Collaborative Sciences Project	Group Project (10 hours)	
		Exam Week (End-Year)		

- **NB:** The Collaborative Sciences Project has been scheduled for the end of the first year of study as this is most likely to be the time when the timetable will have suitable flexibility to allow for the cooperative participation of students from the different scientific disciplines (i.e. Biology, Chemistry, Physics).
- **NB:** This schedule is structured for a HL cohort. While a SL cohort will take less time (in hours) to complete each unit, it is expected that they will also have less class time per week in which to undertake their learning. It is expected that the teacher will adjust the time allocations for a SL cohort accordingly.

Semester 3 (20 weeks)

Time	Unit	Content	Sample Activities (SL)	Sample Activities (HL)
4 weeks	C3: Organisms	C3.1 Integration of body systems [SL/HL]	Bacterial Growth (ZoI)	Seedling Phototropism
	SL: 10 hours	C3.2 Defence against disease [SL]		
	AHL: 2 hours			
3 weeks	C4: Ecosystems	C4.1 Populations and communities [SL]	Lincoln Index Activity	
	SL: 10 hours	C4.2 Transfers of energy and matter [SL]	Yeast Growth Curve	
			Chi-Squared Test Activity	
			Food Chain Activity	
3 weeks	Internal Assessment	Self-designed Investigation and Report	Student Experiments (10 hou	rs)
6 weeks	D1: Molecules	D1.1 DNA replication [SL/HL]	Transformation (pGLO)	
	SL: 8 hours	D1.2 Protein synthesis [SL/HL]		
	AHL: 7 hours	D1.3 Mutations and gene editing [SL/HL]		
3 weeks	D2: Cells	D2.1 Cell and nuclear division [SL/HL]	Potato Cube Osmosis	Mitotic Index
	SL: 2 hours	D2.2 Gene expression [HL]		Genetic Barley
	AHL: 6 hours	D2.3 Water potential [SL/HL]		
1 week	End of Semester	Exam Week (Mid-Year)		

NB: The internal assessment (individual scientific investigation) has been scheduled for the end of term 1 of the second year of study. It is expected that by this point students will have had sufficient time to develop the requisite skills, while still being early enough to accommodate unexpected incursions.

Proposed Weekly Planner – Themes

Semester 4 (20 weeks)

Time	Unit	Content	Sample Activities (SL)	Sample Activities (HL)
6 weeks	D3: Organisms	D3.1 Reproduction [SL/HL]	Virtual Rat Dissection	Chi-Squared Test
	SL: 12 hours	D3.2 Inheritance [SL/HL]	Gene Database Activity	(Dihybrid Crosses)
	AHL: 8 hours	D3.3 Homeostasis [SL/HL]		
4 weeks	D4: Ecosystems	D4.1 Natural selection [SL/HL]	Case Study: Guppies	Allele Databases
	SL: 9 hours	D4.2 Stability and change [SL/HL]	Mesocosm Experiment	(Hardy-Weinberg)
	AHL: 5 hours	D4.3 Climate change [SL/HL]		
10 weeks	Final Examinations	Revision	•	•

Final Examinations

Level	Paper Marks		arks	Time	Content	
	1A	30	30	00 min	30 multiple-choice questions on standard level material	
cı	1B	25	55 (30%)	90 min	Four data-based questions related to experimental work and the syllabus	
SL	2 – Section A	34	EO (449/)	00 min	Data-based question and short-answer questions on standard level material	
	2 – Section B	16	50 (44%)	90 min	Extended-response questions on standard level material (one of two options)	
	1A	40			120	40 multiple-choice questions on SL and AHL material
HL	1B	35	75 (30%)	120 min	Four data-based questions related to experimental work and the syllabus	
	2 – Section A	48	00 (440()	150 min	Data-based question and short-answer questions on SL and AHL material	
	2 – Section B	32	80 (44%)		Extended-response questions on SL and AHL material (two of three options)	

IB SYLLABUS: TOPICS

	C	ells	Molecules	
	A2.2 Introduction [SL]	B2.1 Membrane Transport [SL]	A1.1 Water [SL]	B1.1 Lipids <i>[SL]</i>
Cell Contents	A2.2 Cell Types [SL]	A2.1 Origins of Cells [HL]	B1.1 Organic Compounds [SL]	A1.2 Nucleic Acids [SL]
	B2.3 Specialisation [SL]	B2.2 Cell Structure [HL]	B1.1 Carbohydrates [SL]	B1.2 Proteins [SL]
	B2.1 Membrane Structure [SL]	B2.1 Cell Membranes [HL]		
	Meta	bolism	Ger	netics
Cell Processes	C1.1 Enzymes [SL/HL]	D1.1 DNA Replication [SL/HL]	D1.3 Genes [<i>SL</i>]	D2.2 Epigenetics [HL]
Centrocesses	C1.2 Cell Respiration [SL/HL]	D1.2 Transcription [SL/HL]	D2.1 Cell Division [SL]	D3.2 Gene Linkage [HL]
	C1.3 Photosynthesis [SL/HL]	D1.2 Translation [SL/HL]	D3.2 Inheritance [SL]	D1.3 Biotechnology [HL]
	Equilibrium	Body S	Systems	Plant Systems
	C3.1 Integration [SL]	B3.2 Blood [SL/HL]	C3.2 Immunity [SL]	B3.1 Structure [SL]
Living Systems	D3.3 Regulation [SL]	B3.1 Respiratory [SL/HL]	B3.3 Muscles [HL]	D2.3 Transport [SL/HL]
	C2.1 Communication [HL]	C2.2 Nerves [SL/HL]	D3.3 Kidneys [HL]	D3.1 Germination [SL]
	A2.3 Disease [HL]	D3.1 Reproduction [SL/HL]		C3.1 Plant Signalling [HL]
	Biodiversity	Nutrition	Ecosystems	Human Impacts
	A4.1 Evolution [SL]	B4.2 Niches [SL]	C4.1 Populations [SL]	D4.2 Pollution [SL]
	D4.1 Natural Selection [SL]	C4.2 Energy Transfer [SL]	C4.1 Communities [SL]	D4.3 Climate Change [SL]
Fnvironment	A3.1 Diversity [SL]	C4.2 Nutrient Cycling [SL]	B4.1 Habitats [SL]	
Liviolinicit	A4.2 Extinction [SL]		D4.2 Ecosystems [SL]	
	A4.1 Speciation [HL]		D4.2 Succession [HL]	
	D4.1 Gene Pools [HL]		D4.3 Phenology [HL]	
	A3.2 Cladistics [HL]			

Semester 1 (20 weeks)

Time	Unit	Associated Content	Sub-Topics	Sample Activities (HL)
4 weeks	Cells	A2.2 Cell Structure	Introduction to Cells	Membrane Structure
	<i>SL: 11 hours</i>	B2.1 Membranes and Membrane Transport	Cell Types	Membrane Transport
		B2.2 Organelles and Compartmentalisation	Specialisation	
		B2.3 Cell specialization		
		D2.3 Water potential		
4 weeks	Biomolecules	A1.1 Water	Water	Lipids
	<i>SL: 11 hours</i>	A1.2 Nucleic Acids	Organic Molecules	Nucleic Acids
		B1.1 Carbohydrates and lipids	Carbohydrates	Proteins
		B1.2 Proteins		
5 weeks	Metabolism	C1.1 Enzymes and metabolism	Enzymes	Translation
	<i>SL: 15 hours</i>	C1.2 Cell respiration	DNA Replication	Cell Respiration
		C1.3 Photosynthesis	Transcription	Photosynthesis
		D1.1 DNA replication		
		D1.2 Protein synthesis		
3 weeks	Genetics	D1.3 Mutations and gene editing	Genes	Inheritance
	SL: 7 hours	D2.1 Cell and nuclear division	Cell Division	
		D3.2 Inheritance		
3 weeks	Equilibrium	C3.1 Integration of body systems	Systems Integration	Systems Regulation
	SL: 8 hours	D3.3 Homeostasis		
1 week	End of Semester	Exam Week (Mid-Year)		

Semester 2 (20 weeks)

Time	Unit	Associated Content	Sample Activities (SL)	Sample Activities (HL)
6 weeks	Body Systems	B3.1 Gas exchange	Respiratory System	Immune System
	SL: 15 hours	B3.2 Transport	Blood System	Reproductive System
		C2.2 Neural signalling	Nervous System	
		C3.2 Defence against disease		
		D3.1 Reproduction		
2 weeks	Plant Systems	B3.1 Gas exchange	Plant Structure	Germination
	SL: 5 hours	B3.2 Transport	Transpiration	
		D3.1 Reproduction		
5 weeks	Biodiversity	A3.1 Diversity of organisms	Evolution	Classification
	SL: 13 hours	A4.1 Evolution and speciation	Natural Selection	Extinction
		A4.2 Conservation of biodiversity		
		D4.1 Natural selection		
4 weeks	Nutrition	B4.2 Ecological niches	Niches	Nutrient Cycling
	SL: 10 hours	C4.2 Transfers of energy and matter	Energy Transfer	
3 weeks	End of Year	Collaborative Sciences Project	Group Project (10 hours)	
		Exam Week (End-Year)		

NB: The Collaborative Sciences Project has been scheduled for the end of the first year of study as this is most likely to be the time when the timetable will have suitable flexibility to allow for the cooperative participation of students from the different scientific disciplines (i.e. Biology, Chemistry, Physics).

Semester 3 (20 weeks)

Time	Unit	Associated Content	Sample Activities (SL)	Sample Activities (HL)
4 weeks	Ecosystems	B4.1 Adaptation to environment	Populations	Habitats
	SL: 12 hours	C4.1 Populations and communities	Communities	Ecosystems
		D4.2 Stability and change		
1 week	Human Impacts	D4.3 Climate change	Pollution	Climate Change
	SL: 3 hours			
3 weeks	Internal Assessment	Self-designed Investigation and Report	Student Experiments (10 hours)	
3 weeks	AHL: Cells	A2.1 Origins of Cells	Origins of Cells	Cell Membrane
	HL: 15 hours	A2.2 / B2.1 / B2.2 /B2.3 – Assorted Content	Cell Structure	SL: Review Cells
6 weeks	AHL: Metabolism	C1.1 / C1.2 / C1.3 / D1.1 / D1.2 – Assorted Content	Enzymes	Translation
	HL: 25 hours		DNA Replication	Cell Respiration
			Transcription	Photosynthesis
			SL: Review Biomolecules	SL: Review Metabolism
2 weeks	AHL: Genetics	D2.2 Gene expression	Epigenetics	Biotechnology
	HL: 10 hours	D1.3 / D3.2 – Assorted Content	Gene Linkage	SL: Review Genetics
1 week	End of Semester	Exam Week (Mid-Year)	•	·

- **NB:** The internal assessment (individual scientific investigation) has been scheduled for the end of term 1 of the second year of study. It is expected that by this point students will have had sufficient time to develop the requisite skills, while still being early enough to accommodate unexpected incursions.
- **NB:** If students of both levels (SL and AHL) are being taught in the same class in the second year, it is expected that the AHL students will have additional lessons to meet the higher workload. When AHL topics are eventually covered, SL students would be expected to revise the concomitant SL content. *This planner allocates 3 hours per week for SL content and 5 hours per week for AHL content in year two (3 hours per week for SL content in year one).*

Semester 4 (20 weeks)

Time	Unit	Associated Content	Sample Activities (SL)	Sample Activities (HL)
2 weeks	AHL: Equilibrium	C2.1 Chemical signalling [HL]	Cell Signalling	Cancer
	HL: 10 hours	C2.2 / C3.1 / D3.3 – Assorted Content	Viruses	SL: Review Equilibrium
4 weeks	AHL: Body Systems	B3.3 Muscle and motility	Respiratory System	Reproductive System
	HL: 20 hours	B3.1 / B3.2 / C2.2 / C3.2 / D3.1 – Assorted Content	Blood System	Muscular System
			Nervous System	Excretory System
			SL: Review Body Systems	
1 week	AHL: Plant Systems	C3.1 / D2.3 – Assorted Content	Translocation	Plant Signalling
	HL: 5 hours		SL: Review Plant Systems	
2 weeks	AHL: Biodiversity	A3.2 Classification and cladistics	Speciation	Cladistics
	HL: 10 hours	A3.1 / A4.1 / A4.2 / D4.1 – Assorted Content	Gene Pools	SL: Review Biodiversity
1 weeks	AHL: Ecosystems	D4.2 / D4.3 – Assorted Content	Succession	Seasonal Changes
	HL: 5 hours		SL: Review Ecology	SL: Review Human Impact
10 weeks	Final Examinations	Revision		

Final Examinations

Level	Paper	Marks	Time	Content
SL	1A + 1B	55 (36%)	90 min	30 multiple-choice questions and 4 data-based questions on standard level material
	2 (Sections A + B)	50 (44%)	90 min	Data-based, short-answer and extended-response questions on standard level material
HL	1A + 1B	75 (36%)	120 min	40 multiple-choice questions and 4 data-based questions on SL and AHL material
	2 (Sections A + B)	80 (44%)	150 min	Data-based, short-answer and extended-response questions on SL and AHL material